skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McNeill, V Faye"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hemati, Sara (Ed.)
    The application of 222 nm light from KrCl excimer lamps (GUV222 or far-UVC) is a promising approach to reduce the indoor transmission of airborne pathogens, including the SARS-CoV-2 virus. GUV222 inactivates airborne pathogens and is believed to be relatively safe for human skin and eye exposure. However, UV light initiates photochemical reactions which may negatively impact indoor air quality. We conducted a series of experiments to assess the formation of ozone ( O 3 ), and resulting formation of secondary organic aerosols (SOA), induced by commercial far-UVC devices in an office environment (small conference room) with an air exchange rate of 1.3   h 1 . We studied scenarios with a single far-UVC lamp, corresponding to the manufacturer’s recommendations for disinfection of a space that size, and with four far-UVC lamps, to test conditions of greater far-UVC fluence. The single lamp did not significantly impact O 3 or fine particulate matter levels in the room. Consistent with previous studies in the literature, the higher far-UVC fluences lead to increases in O 3 of 5 to 10 ppb above background, and minor increases in particulate matter (16% ± 10 % increase in particle number count). The use of far-UVC at minimum intensities required for disinfection, and in conjunction with adequate ventilation rates (e.g. ANSI/ASHRAE recommendations), may allow the reduction of airborne pathogen levels while minimizing the formation of air pollutants in furnished indoor environments. 
    more » « less
    Free, publicly-accessible full text available August 11, 2026
  2. Free, publicly-accessible full text available May 15, 2026
  3. The indoor surfaces of dwellings across the United States range exhibit a wide range of chemical compositions and physical properties, which impacts semi-volatile partitioning, heterogeneous chemistry and the overall properties of indoor air. 
    more » « less
    Free, publicly-accessible full text available June 18, 2026
  4. In the past decades, China has witnessed high air pollution associated with rapid economic development, although regulatory efforts have alleviated the situation since 2013. Haze events characterized by high particulate matter (PM) levels in China are not only of enormous magnitude but also represent a distinct chemical regime. Once driven by direct emissions, these high-PM episodes are now more affected by secondary aerosol, especially secondary organic aerosol (SOA). This Review synthesizes the state of the science of SOA formation in urban China, specifically (i) how the dominance of anthropogenic precursors affects SOA formation, (ii) what are the prevailing SOA formation mechanisms, and (iii) how important are the multipollutant and multiphase processes in SOA formation and evolution. We also highlight essential directions for future studies. 
    more » « less
    Free, publicly-accessible full text available August 28, 2026
  5. ABSTRACT: Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0−3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO4 2−). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1). While IEPOX-SOA formation is commonly assumed to increase at low pH when more [H+] is available to protonate epoxides, we observe maximum SOA formation at pH 1 and less SOA formation at pH 0.0 and 0.4. This is attributed to limited availability of SO4 2− at pH values below the acid dissociation constant (pKa) of SO42− and bisulfate (HSO4−). The nucleophilicity of HSO4− is 100× lower than SO42−, decreasing SOA formation and shifting particulate products from low-volatility organosulfates to higher-volatility polyols. Current model parameterizations predicting SOA yields for IEPOX-SOA do not properly account for the SO42−/HSO4 − equilibrium, leading to overpredictions of SOA formation at low pH. Accounting for this underexplored acidity-dependent behavior is critical for accurately predicting SOA concentrations and resolving SOA impacts on air quality. 
    more » « less
  6. Blum, Joel (Ed.)
    Atmospheric oxidation of isoprene yields large quantities of highly water-soluble isoprene epoxydiols (IEPOX) that partition into fogs, clouds, and wet aerosols. In aqueous aerosols, the acid-catalyzed ring-opening of IEPOX followed by nucleophilic addition of inorganic sulfate or water forms organosulfates and 2-methyltetrols, respectively, contributing substantially to secondary organic aerosol (SOA). However, the fate of IEPOX in clouds, fogs, and evaporating hydrometeors is not well understood. Here we investigate the rates, product branching ratios, and stereochemistry of organosulfates from reactions of dilute IEPOX (5–10 mM) under a range of sulfate concentrations (0.3–50 mM) and pH values (1.83–3.38) in order to better understand the fate of IEPOX in clouds and fogs. From these aqueous dark reactions of β-IEPOX isomers (trans- and cis-2-methyl-2,3-epoxybutane-1,4-diols), which are the predominant IEPOX isomers, products were identified and quantified using hydrophilic interaction liquid chromatography coupled to an electrospray ionization high-resolution quadrupole time-of-flight mass spectrometer operated in negative ion mode (HILIC/(−)ESI-HR-QTOFMS). We found that the regiochemistry and stereochemistry were affected by pH, and the tertiary methyltetrol sulfate (C5H12O7S) was promoted by increasing solution acidity. Furthermore, the rate constants for the reaction of IEPOX under cloud-relevant conditions are up to 1 order of magnitude lower than reported in the literature for aerosol-relevant conditions due to a markedly different solution activities. Nevertheless, the contribution of cloud and fog water reactions to IEPOX SOA may be significant in cases of lower aqueous-phase pH (model estimate) or during droplet evaporation (not studied). 
    more » « less